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AbItnct-The dynamic stiffness matrix for circular curved members of constant section has been derived
for the determination of natural frequencies of continuous curved beams underaoing in-plane vibrations. An
example of a two-span curved beam is liven to illustrate the application of the proposed method and to
show the effects of rotary inertia, shear and the central angle of the arc upon the natural frequencies of the
beam.

I. INTRODUCTION

The problem of in-plane vibrations of curved beams has been the subject of many in
vestigations. Den Hartog[l] in 1928 used the Rayleigh-Ritz method for finding the lowest
natural frequency of circular arcs. The first detailed work dealing with the free vibration of
pinned circular ring segments was published by Waltking[2]. Archer[3] carried out a mathema
tical study of the inextensional vibrations of an incomplete circular ring with additionsl terms to
represent damping effects. Recently, Wang and Lee[4,S] presented a general method for
analyzing both free and forced vibrations of multispan circular curved frames. Their method of
analysis can also be used in the study of continuous curved beams.

The classical Bernoulli-Euler theory of flexural vibrations of beams has been recognized as
adequate for relatively long slender beams at lower modes of vibration. For beams when the
effect of the cross-sectional dimensions on frequencies cannot be neglected, and for beams in
which higher modes are required, the Timoshenko theory[6] which considers the effects of
rotary inertia and shear deformation gives a better approximation to the true behavior of a
beam.

Much work has been done concerning the effects of rotary inertia and shear on straight
beam vibrations. In case of curved beams, Philipson[7] studied the rotary inertia and shear
effects on the in-plane vibrations of circular rings. The vibrations of a free ring SUbjected to the
effects of bending, shear and extensional strain energies, together with translational and
rotational kinetic energies were considered by Seidal and Erdelyi[8]. Rao and Sundararajan[9]
investigated the in-plane flexural vibrations of free and stiffened rings with rotary inertia and
shear effects being included.

In the works just mentioned, only the effects of rotary inertia and shear on single rings or
ring segments have been considered. To the authors' knowledge, no investigations have been
made for circular curved beams of multiple spans. The objective herein is to present a general
method for analyzing continuous circular curved beams including both shear and rotary inertia
effects. In this paper, the dynamic stiffness matrix for a circular curved member in terms of
rotations, vertical and horizontal displacements, has been derived. The application of the
proposed method is then illustrated by the determination of the natural frequencies of a
two-span curved beam. Numerical results are given to show the effects of rotary inertia, shear
deformation and the central angle of the arc upon the natural frequencies of the beam.

2. EQUATIONS OF MOTION AND THEIR SOLUTIONS

Consider the in-plane, small undamped vibration of a circular curved element ds as shown
in Fig. 1.
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Fig. I. Element of curved member subjected to forces and moments.

The equations of motion in radial and tangential directions and the moment equation are

~ - _ a2u
a6 +N - 'YARarr

aN - a2wai - Q = 'YAR-;nr

aM - a2t/!-ai+ QR = 'Y1Rarr

(I)

(2)

(3)

where Q(6, t) is the shear force, N(6, t) the normal force, M(6, t) the bending moment, 'Y the
mass per unit volume, I the moment of inertia of cross section, A the cross-sectional area, R
the radius of circular are, 6 the angular coordinate, u the inward radial displacement, w the
tangential displacement in the sense of increasing 6, t/! the bending slope and t the time. For
inextensional vibration, the displacements must satisfy the following condition

aw
u=ji' (4)

The total angle ~ between the deformed and undeformed center lines may be expressed as[6]

1 ( au)~=t/!+I3=- w+-R a6
(5)

where 13 is the angular deformation due to shear.
From the elementary theory of bending, the bending moment and shear force are given

respectively as follows:

M= _Blat/!
R a6

(6)
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Q= kAG{3
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(7)

where E is the modulus of elasticity, G the modulus of rigidity and k the cross-sectional shape
factor.

From eqns (4), (5) and (7) we obtain

(8)

Eliminating N from eqns (I) and (2) and employing eqns (4) and (8) gives

Substituting eqns (6) and (8) into eqn (3) yields

_~a2I/J yIR a2I/J _ a2w
RI/I kAGR aBr +kAG""'itr - a62 + w.

Finally, eliminating 1/1 from eqns (9) and (10), the following equation in w is obtained:

(9)

(10)

(11)

Assume that the curved member is undergoing free vibration with a frequency p and let

w(6, t) = W(6) eip
,

1/1(6, t) = '1'(6) eip'.

(12)

(13)

where i =V( -1) and, W(6) and '1'(6) are the normal functions of wand 1/1, respectively.
Substituting eqns (12) and (13) into eqns (9), (10) and (11) and omitting the common term elpl,
one has

R'I'+R'I'W= WlV +(2+b2s2)ww+(I-b2s2)W

(1- b2r2s2)R'I' - s2R'I'" = W" +W

W V1 +(2 +b2r2+b2s2)W1V +(I-b2+2b2r2-b2s2 +b4rs2)W"

+(b2+b2r2-b4r2s2)W =0

(14)

(IS)

(16)

where b, r, s represent effects of bending, rotary inertia and shear deformation, respectively,
and are given by

and the primes for W and 'I' represent differentiation with respect to 6.
The solution of eqn (16) may be expressed as

6

W(6) = I e" eA.-
,,·1

(17)

(18)

where e" are constants to be determined by boundary conditions, and A" are the roots of the
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following polynomial equation
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A6 +(2 +b2r2 +b2s2)A 4 +(I _ b2 +2b 2r 2 - b2s2+ b4r2s2)A 2

+(b 2 +b2r2
- b4r2s2

) = O.

For harmonic vibrations,

u(9, t) = U(9) eiP1
•

From eqns (4) and (18) one has

6

U(9) = W'(9) = L cnAn eA.'.
n-I

(19)

(20)

(21)

The relation between '1'(9) and W(9) can be obtained from eqns (14) and (IS) by eliminating
'1'". Thus one obtains

Substituting eqn (18) into eqn (22) yields

6

R'I'(9) = L CnVn eA.'
n-I

where

(23)

(24)

3. DERIVATION OF DYNAMIC STIFFNESS MATRIX

Figure 2 shows a circular curved member of constant cross section subjected to harmonic
displacements, linear and rotational, at the two ends A and B.

Let

M(9, t) = M(9) eipl

Q(9, t) = Q(9) e1p1

N(9, t) = N(9) e1p1

(25)

(26)

(27)

where M, Q and N are normal functions of M, Qand N, respectively.
Substituting eqns (12), (13) and (25H27) into eqns (6), (8) and (2) and omitting the common

term e/pl yield

M(9) = - E1 '1"(9)
R

Q(9) = k~G {W"(9) +W(9) - R'I'(9)}

N(9) = -Q'(9) -'YARp2W'(8).

Introducing eqns (18) and (23) into eqns (28H30) give

M() E1 ~ At9 = -jp ~ cnvnAne •
n-I

(28)

(29)

(30)

(31)
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Fig. 2. Positive displacements, forces and moments with common factor elpl omitted.

where

Referring again to Fig. 2, the boundary conditions are

8a ='1'(0)

8" = 'I'(a)

Ya = U(O) sin p - W(O) cos P

Yb =U(a) sin 1j +W(a)cos1j

Xa = U(O) cos p + W(O) sin p

Xb =- U(a) cos 1j + W(a) sin 1j

285

(32)

(33)

(34)

(35)

Similarly, the moments, vertical and horizontal thrusts at the two ends may be expressed as

Malo = M(O)

M"a = ··M(a)

Vab =Q(O) sin p - N(O) cos p

Vba = Q(a) sin 1j +N(a) cos 1j

HGb = - Q(O) cos p - N(O) sin p

Hba =Q(a) cos 1j - N(a)sin 1j

(36)

Substitution of eqns (18), (21), (23) and (3tH33) into eqns (35) and (36) yield the results in the
foUowina matrix fonns:

D=AX (37)

(38)
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where

BaR MablR CI

BbR MbalR C2

Ya Vab C3

D= Yb F= Vba X= C4 (39)
Xa Hab Cs

Xb Hba C6

and matrices A and B are given in the Appendix.
Premultiplying eqn (37) by A-I and substituting into eqn (38) one obtains

F=SD

where S, the dynamic stiffness matrix for a curved member, is given by

(40)

SlI SI2 S\3 SI4 SIS SI6

S21 S22 S23 S24 S2$ S26

S31 S32 S33 S34 S3S S36

S= S41 S42 S43 S44 S4S S46 = i~ BA-1
• (41)

S'I SS2 SS3 SS4 Sss S56

S61 S62 S63 S64 S6S S66

4. EXAMPLE

Atwo-span symmetrical circular curved beam of constant section undergoing in-plane vertical
vibrations as shown in Fig. 3 is analyzed for natural frequencies. .

The boundary conditions are

YA=O, YB=O, yc=O

XA = 0, XB = 0, Xc =°
BBA = BBC

I

and the eqUilibrium conditions are

MAB = 0, MBA +MBc = 0, MCB =°
VBA = VBC

HBA =HBC

Due to symmetry, Fig. 2 gives

P = 1/.

, /, /, ", /, "
'" ,," R

'A;o", "v

Fig. 3. A two-span circular curved beam.

(42)

(43)

(44)
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Since the beam has two identical spans, one has

SAS =Sse =S, AAB =ABe = A, BAs = Bse =B.

Thus eqns (40)-{42) give

MAslR = sll6AR +sdJaR

MsAIR = S216AR + S226sR

MBclR = sll6aR +S126eR

MCBIR = S216aR +S226cR

287

(45)

(46)

Substituting eqns (46) into eqns (43) yields a system of simultaneous equations in the following
matrix form

[
MABIR ~ [Sll SI2 OJ [8A

R

U
[0]

(MBA + MsC>IR = S2\ 511 +522 5\2 6aR. = 0 .
MCBIR 0 521 522 6cR 0

(47)

Equating the determinant of the stiffness matrix in eqn (47) to zero yields the frequency
equation as

511 512 0
521 511+S22 512 =0.
o S21 522

(48)

For a given curved beam with rand 5 known, the values of be (c =1,2,3, ...) can be
determined from eqn (48). In order to show the effects of rotary inertia and shear deformation
on the natural frequencies of the beam, the beam section is assumed to be a rectangle. The
elastic properties are E =206.85 x Ilr MPa (or 30 x 10' Ib/in2

) and G =82.74 x Ilr MPa (or
12 x 10'Ib/in2

). The value of k for a rectangular section as given by Timoshenko(10) is 0.667.
Thus E/(kG) - 4 and 5 - 2r. Consider a =6<r, the values of b for r =0 and r =0.04 for the first
five modes, obtained from eqn (48), are respectively

bo= 33.63, 42.94, 75.08, 86.97, 141.6,

b =29.82, 35.45, 59.45, 63.51, 99.03.

Let Po be the frequencies from the classical theory. Since blbo= p/Po, one has

plpo = 0.887, 0.826, 0.792, 0.730, 0.699.

The results of p/po vs r for a =6<r, 1200 and 1800 for the first five modes, with r varying from 0
to 0.10, are shown in Fig. 4. .

S. CONCLUSIONS
The dynamic stift'ness matrix formulation for circular curved members of constant cross

section, including the effects of rotary inertia and shear deformation, has been presented for the
determination of the natural frequencies of continuous curved beams. The application of the
proposed method has been Dlustrated in the example of a two-span curved beam undergoing
nalW'al vertical vibrations. From the curves shown in Fig. 4, it can be seen that the elects of
rotary inertia and shear deformation become more pronounced as tbe central angle of the arc
decreases. It is also observed that the reduction of the ratio of natural frequencies is increased
as the values of r and 5 increase. For high modes the curves show that an increase in reduction
as biab as 63% is possible..
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Fig. 4. Corrections in natural frequencies of a two-span curved beam owing to rotary inertia and shear

deformation. --, a =60°; -----, a =120"; ---, a =180".
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APPENDIX
Derivation of eqns (37) and (38)

Substituting eqns (18), (21), (23) into eqns (35) yield

•
/!"R =~ c.v. e"·.-1

6

Y. =~ c.(A. s1np -cosp).-1
6

Yb = ~ c.(A. sin'll +cos TI)e"·.-1
6

x. = ~ c.(A. cosp +sinp).-1
•

Xb =~ c.(sinTl -A. cosTl)e"·.-1

(AI)
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Equations (AI) may be writtcn in matrix form as follows:

D=AX

whcrc A is givcn by

["
v~ v) V. Vl

" ]VI eAla Vz e":o V3C.l)D v.. C"'4R V~ e"·o V,C"·a

A= a,l OJ:! an a~ a)l a:w.
a.1 G-tZ a.) a.. a.l a~

all a~2 al) aJ.< all aJo

a61 a,:! aM aM aM aM
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(37)

(A2)

all '" AI sinp -cos p.
a~= A. sinp -cos p.
/hl = (AI sin" +cos ,,) c"".
a.) • (A) sin" +cos,,) c''''.a., •(A, sin " +cos,,) c''''.
a'I" AI cos p +sin p,
a,. '" A.cos p +sin p,
a.l· (sin" -AI cos ,,)c·I••
a63 .. (sin " - A) cos,,) c''''•
a., = (sin" -A, cos ,,) c''''.

a)~ =A~ sin p -cos p.
a), = A, sinp -cosp.
a.~ = (A~ sin" +cos,,) c',,,
a.. =(A. sin" +cos ,,) c"·.
a.. = (A. sin" +cos ,,) cAoa•

a,~ = A~ cos P+sin p.
a" = A, cosp +sinp.
a62 = (sin" -Azcos ,,)c·....
a.. = (sin" -A. cos ,,)c·,a.
a.. = (sin" - A, cos,,) cAoa •

a)) = A) sinp -cosp,
a:w. = A6 sinp -cosp.

a,) = A) cos p +sin p.
a,. = A.cosp +sinp.

Similarly. substituting cqns (31)-(33) into cqns (36) givc

6

Md/R = -(El/R) ~ c.v.A•
• -1

•
M...tR =(El/R) ~ c.v.A. c"·.-1

6

V•• =(El/R) ~ c.{z.(sinp +A. cosp)+bzA. cosp}.-1
•

V.. = (El/R) ~ c.{z.(sin" -A. cos ,,)-bzA. cos ,,} c'".-1
6

H•• = (El/R) ~ c.{z.(A. sinp -cosp)+bzA. sinp}.-1
6

H•• =(El/R) ~ c.{z.(A. sin" +cos,,)+bzA. sin ,,} c'··.-1
In matrix form. cqns (A3) may be cxprcsscd as

where Bis given by

~-"., -,,A, -v).\) -v.A. -v,A,

-~'J
VIA Ic·l• vzAz c·... v)A) c')O v.A. cAoa vsA, c'" v.A.cAoa

b)1 b)z bn b~ b)) b36
B.. b'l b'2 b.) b.. b., b..

b51 b'2 b,) b5<l b" b,.
b.1 b62 b6J b.. b., b..

b)l. ZI(Sinp +AI cosp) +b2AI cos P. b)2 = zz(sinp +Azcosp) +b2A2COSp.
b)) ... zl(sinp +A) cos p) +bzA) cos p. b,. ... z4sinp +A. cos p) +bzA, cosp.
b), '" z,(sin P +A, cos p) +bzA, cos P. b36" zr.{sinp +A.cos p) +b2A,cos p.
b.. ,. {ZI(Sin" -AI cos ,,) -bzAI cos ,,} c·'·.b.z = {zz(sin" -Azcos ,,) -b2Azcos ,,}c· .
b.) (zJ(sin" -A) cos ,,) -bzA) cos ,,}c·...b.. '" (z,(sin" -A, cos ,,) -bzA,cos ,,}c· .
b., (z,(sin" -A, cos ,,) -bzA, cos ,,} c'" .b.. '" {z.(sin" -A. cos ,,) -bzA,cos ,,}e .
b" '" zl(A, sinp -cos p) +b2AI sin p. b'2 =zz(Az sin p -cosp) +bzAz sinp.
b,) .. %)(A) sinp -cos p) +b2A) sin p. b,. '" z.(A. sinp -cos p) +b2A. sin p.
b" .. z,(A, sin p -cos p) +b2A, sin p. b,. '" z.(A, sin p -cos p) +bzA. smp.
b61 - (zl(AI sin" +cos ,,) +b2AI sin ,,} c"·. b62· (zz(Az sin" +cos ,,) +bzAz sin ,,}e .
b63 - (zJ(A) sin" +cos ,,) +bzA) sin ,,}c·". b.. • (z.(A, sin" +cos ,,) +b2A, sin ,,}e .
b., '" (z,(A, sin" +cos ,,) +b2A, sin ,,}c·... b.. '" (z.(A. sin" +cos ,,) +b2A. sin ,,} c .

(AJ)

(38)

(A4)


