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Abstract—The dynamic stiffness matrix for circular curved members of constant section has been derived
for the determination of natural frequencies of continuous curved beams undergoing in-plane vibrations. An
example of a two-span curved beam is given to illustrate the application of the proposed method and to
show the effects of rotary inertia, shear and the central angle of the arc upon the natural frequencies of the
beam.

1. INTRODUCTION

The problem of in-plane vibrations of curved beams has been the subject of many in-
vestigations. Den Hartog[1] in 1928 used the Rayleigh~Ritz method for finding the lowest
natural frequency of circular arcs. The first detailed work dealing with the free vibration of
pinned circular ring segments was published by Waltking[2]. Archer[3] carried out a mathema-
tical study of the inextensional vibrations of an incomplete circular ring with additionsl terms to
represent damping effects. Recently, Wang and Lee[4,5] presented a general method for
analyzing both free and forced vibrations of multispan circular curved frames. Their method of
analysis can also be used in the study of continuous curved beams.

The classical Bernoulli-Euler theory of flexural vibrations of beams has been recognized as
adequate for relatively long slender beams at lower modes of vibration. For beams when the
effect of the cross-sectional dimensions on frequencies cannot be neglected, and for beams in
which higher modes are required, the Timoshenko theory{6] which considers the effects of
rotary inertia and shear deformation gives a better approximation to the true behavior of a
beam.

Much work has been done concerning the effects of rotary inertia and shear on straight
beam vibrations. In case of curved beams, Philipson[7] studied the rotary inertia and shear
effects on the in-plane vibrations of circular rings. The vibrations of a free ring subjected to the
effects of bending, shear and extensional strain energies, together with translational and
rotational kinetic energies were considered by Seidal and Erdelyi[8]. Rao and Sundararajan[9]
investigated the in-plane flexural vibrations of free and stiffened rings with rotary inertia and
shear effects being included.

In the works just mentioned, only the effects of rotary inertia and shear on single rings or
ring segments have been considered. To the authors’ knowledge, no investigations have been
made for circular curved beams of multiple spans. The objective herein is to present a general
method for analyzing continuous circular curved beams including both shear and rotary inertia
effects. In this paper, the dynamic stiffness matrix for a circular curved member in terms of
rotations, vertical and horizontal displacements, has been derived. The application of the
proposed method is then illustrated by the determination of the natural frequencies of a
two-span curved beam. Numerical results are given to show the effects of rotary inertia, shear
deformation and the central angle of the arc upon the natural frequencies of the beam.

2. EQUATIONS OF MOTION AND THEIR SOLUTIONS

Consider the in-plane, small undamped vibration of a circular curved element ds as shown
in Fig. 1.
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Fig. 1. Element of curved member subjected to forces and moments.

The equations of motion in radial and tangential directions and the moment equation are

—Q+N yAR (1)
B _0-varly @
"M QR = ymﬁ"; 3)

where Q(6,¢) is the shear force, N(6,t) the normal force, M(6,t) the bending moment, y the
mass per unit volume, I the moment of inertia of cross section, A the cross-sectional area, R
the radius of circular arc, 6 the angular coordinate, u the inward radial displacement, w the
tangential displacement in the sense of increasing 6, ¢ the bending slope and ¢ the time. For
inextensional vibration, the displacements must satisfy the following condition

aw
u=2. )

The total angle ¢ between the deformed and undeformed center lines may be expressed as[6]

b=y +B=1(v+2) ®

where B is the angular deformation due to shear.
From the clementary theory of bending, the bending moment and shear force are given
respectively as follows:

gl&

-_-2
M=-2 ©)
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0 = kAGB ™

where E is the modulus of elasticity, G the modulus of rigidity and k the cross-sectional shape
factor.
From eqns (4), (5) and (7) we obtain

= kAG (d*w
Q=T(—052-+w—R¢>. ®)

Eliminating N from eqns (1) and (2) and employing eqns (4) and (8) gives

d*w YR 3w  yR*@’w
Ro +R%h = - R T, )
Substituting egns (6) and (8) into eqn (3) yields

EI %  yIR % _d*w
Ry~ CAGR 70 T%kAG a1* ~ 36> T ™ (10)

Finally, eliminating ¢ from eqns (9) and (10), the following equation in w is obtained:

dw d'w 3w _ (yR? yi’) 3w _(y’R‘)
FrRE TR (E *%G ) 363t ~\ExG ) 367

UR g ARY) S (PR (R AR
+(2E kG EI ao’at2+(EkG VB TE an

Assume that the curved member is undergoing free vibration with a frequency p and let

w(6,t) = W(0)e* (12)

¥(0,t) = ¥(8)e®. (13)

where i =V/(-1) and, W(8) and ¥(6) are the normal functions of w and ¥, respectively.

Substituting eqns (12) and (13) into eqns (9), (10) and (11) and omitting the common term e*',
one has

RY+RV"=WY +24b%)W" +(1 - b3sHW (14)

(1-b*r*s)RY —-s'R¥V" = W'+ W (15)

WY +Q+br +b%HW™ +(1 -b2+2b%r* - b2s* + b*rPsHW"
+(B*+b7 -brisHW =0 (16)

where b, r, s represent effects of bending, rotary inertia and shear deformation, respectively,
and are given by

b= yAp*R*/(EI), r*=1I/(AR®, s®=EIl/(kAGR? an

and the primes for W and ¥ represent differentiation with respect to 6.
The solution of eqn (16) may be expressed as

6
w(0)= .2.:. C, €M? (18)

where c, are constants to be determined by boundary conditions, and A, are the roots of the
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following polynomial equation

A+ Q2 +b b3 O +(1 ~ b2 +2b*r* - b2 + b*risHa?

+(b2+b* - b*r’s?H) =0. (19
For harmonic vibrations,
u(8,t)=U(6)e™, (20)
From eqns (4) and (18) one has
[
U(@)=we)= 21 Crhn €M, @1

The relation between ¥(8) and W(8) can be obtained from eqns (14) and (15) by eliminating
¥". Thus one obtains

(A +52-b*’ )RV = s>WW + (1 +252 4+ b:YW" + (1 +5* - b3sYW (22)

Substituting eqn (18) into eqn (22) yields
6
R¥(6) = Y, cavy €™ (23)
n=|

where

s+ (14252 b5 YA + (1 52 = b5
" (1+5°-b*r’s%) ’

24

3. DERIVATION OF DYNAMIC STIFFNESS MATRIX

Figure 2 shows a circular curved member of constant cross section subjected to harmonic
displacements, linear and rotational, at the two ends A and B.

Let
M(6,1)= M(6) ™ (25)

Q(6,1)= Q(8) ™ (26)

N(6,t)=N(0)e™ @n

where M, Q and N are normal functions of M, Q and N, respectively.
Substituting eqns (12), (13) and (25)~(27) into eqns (6), (8) and (2) and omitting the common
term e” yield

M©=-Z v @)
Q® =*4E (W) + W(0) - R¥(6)) 9)
N(®)= -Q'(6)~7ARD*W'(®). G0)

Introducing eqns (18) and (23) into eqns (28)—(30) give

6
M(9) = -%I, 2} CaUnh, €° 31
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Fig. 2. Positive displacements, forces and moments with common factor ¢*' omitted.

EI & R
Q)= f’..z.:'. CaZn €M (32)
EI g 2 An8
N@O)=-33 2‘ nlzn + DDA, €M (33)
where
2722 _An2l+b2 2+b2 2 —An‘
S AR 64
Referring again to Fig. 2, the boundary conditions are
8, = ¥(0) ]
6y = ¥(a)
Yo = U(0)sinp — W(0)cos p
{ (39

¥ = Ula)sinng + W{a)cos 5
Xa = U(0)cosp + W(0) sinp
xp=-U(a)cosn +W(a)sing J

Similarly, the moments, vertical and horizontal thrusts at the two ends may be expressed as

Mo = M(O) 1

My =--M(a)

Vo =Q0)sinp ~N@0)cos p

Vio = Qa) sinn + N(a)cos 0 (36)
Hg,=-Q(@)cosp—~N(0)sinp

Hy, = Q(a)cosn ~N(a)sinn | .

Substitution of eqns (18), (21), (23) and (31)~(33) into eqns (35) and (36) yield the results in the
following matrix forms:

D=AX 37

F= -I-Eé BX (38)
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where
- - — - p—~
0,R ManR Ci T
R My./R C2
Ya Vab C3
D = )'b ’ F = Vba [ x =1 Ca
Xa Ha Cs
[ %] L Hia - 66 ]

and matrices A and B are given in the Appendix.
Premultiplying eqn (37) by A~' and substituting into eqn (38) one obtains

F=SD
where S, the dynamic stiffness matrix for a curved member, is given by

—

SnoSi2 Si3 S Sis Sis |
$21 S22 Su Su S S
S31 S32 533 Sa Sis Sz

EI . _

S=| Su Sa So Su S S« | ==-BA™\
R;

551 852 Ss3 Ssq4 Sss Sse

L_S61  S62 Se3 Se64 Ses  Set

4. EXAMPLE

(39

(40)

@n

A two-span symmetrical circular curved beam of constant section undergoing in-plane vertical

vibrations as shown in Fig. 3 is analyzed for natural frequencies.
The boundary conditions are

yA=0’ YB=0; )'C=0
XA=0, xg=0, xc=0

087 = 0pc
and the equilibrium conditions are

Mag =0, Mpa+Msc=0, Mcz=0
Via = Vg
Hpa = Hpc

Due to symmetry, Fig. 2 gives

4 hY rd
AN / N ’
N / ~ s
N % N %
\\ , R ~ R
-3 // \\ o S
N W
N2 N s
4 v

Fig. 3. A two-span circular curved beam.

42)

(43)

(44)
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Since the beam has two identical spans, one has
Sae=Ssc =S, Aap=Apc=A, Bap=Bsc=B. (45)
Thus eqns (40)-(42) give

MasIR = 51164R +51208R
M3a/R = 52104R +52205R
MpciR = 51108R +5126cR (46)
Mcs/R = 52108R +520cR

Substituting eqns (46) into eqns (43) yields a system of simultaneous equations in the following
matrix form

Map/R i 512 0 || 6aR 0
(Mpa +Mgc)/R | _| 521 su+sn su|} 6sR| _| 0 @)
Mcs/R 0 $21 sn|l 6cR 0

Equating the determinant of the stiffness matrix in eqn (47) to zero yields the frequency
equation as

i §12 0
S21 Sutsn S

=0. 48
0 521 S» “8)

For a given curved beam with r and s known, the values of b; (c =1,2,3,...) can be
determined from eqn (48). In order to show the effects of rotary inertia and shear deformation
on the natural frequencies of the beam, the beam section is assumed to be a rectangle. The
elastic properties are E = 206.85 x 10° M Pa (or 30 x 10°Ib/in>) and G =82.74 x 10° M Pa (or
12 x 10° Ib/in?). The value of k for a rectangular section as given by Timoshenko[10} is 0.667.
Thus E/(kG) =~ 4 and s = 2r. Consider a = 60°, the values of b for r =0 and r = 0.04 for the first
five modes, obtained from eqn (48), are respectively

bo=33.63, 4294, 75.08, 8697, 1416,
b=2982, 3545, 5945, 63.51, 99.03.

Let po be the frequencies from the classical theory. Since b/bg = p/po, one has
plpo=0.887, 0826, 0.792, 0.730, 0.699.

The results of p/po vs r for a = 60°, 120° and 180° for the first five modes, with r varying from 0
to 0.10, are shown in Fig. 4.

5. CONCLUSIONS

The dynamic stiffness matrix formulation for circular curved members of constant cross
section, including the effects of rotary inertia and shear deformation, has been presented for the
determination of the natural frequencies of continuous curved beams. The application of the
proposed method has been illustrated in the example of a two-span curved beam undergoing
natural vertical vibrations. From the curves shown in Fig. 4, it can be seen that the effects of
rotary inertia and shear deformation become more pronounced as the central angle of the arc
decreases. It is also observed that the reduction of the ratio of natural frequencies is increased
as the values of r and s increase. For high modes the curves show that an increase in reduction
as high as 63% is possible.
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Fig. 4. Corrections in natural frequencies of a two-span curved beam owing to rotary inertia and shear
deformation. , & =60% -——- va =120 —-—, a = 180°,
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APPENDIX

Derivation of eqns (37) and (38) ) '
Substituting eqns (18), (21), (23) into eqns (35) yield

[
6.R = 2. Caln
[
0R = > cpvu ™
a=l
[]
Yo = 21 en{Aa sin p — o5 p)
[
Yo = 3 CalAx 5in 7 +cos n) e (AD

&
Xa =, calha OS5 p +5in p)

At

6
Xp = 21 calsinmy —A, cOs 7)) €
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Equations (A1) may be written in matrix form as follows:

89

D=AX 37
where A is given by
[ v U3 7] Us Ve
o el o 2 elgﬂ v eA,n Ve eA4n s eAqa Ve eA.n
A=| au ax an au ass a3
(] dq Qs Qu Qaas Qan (A2)
asi as2 asy asa ass ase
Qei Qo2 (T3] Qs Qos Qee
axn =A;sinp —cos p, as= Aasinp —cos p, ax = A3sinp ~cos p,
@3 = AqSinp —cos p, ays = Assinp —cos p, @3 = Assin p —coS p.
aa=(Aisiny +cos )", aa=(A:sinn +cosn)e,
ao=(Asing +cos n)e™,  au=(A4sinn +cos ),
as=(Assing +cos n)e*™,  au = (Assin n +cos 7).
as1 = A1 oS p +sin p, asx= A2¢08 p +sin p, as3 = A3cos p +sinp,
ase= A4 COS p +sinp, ass = AsCOS p +8in p, @36 = Ae COS p +5in p.
ae1 = (sinn —1,cos 9) ¢, a2 = (sinn —Azc05 ) ',
ae3=(sinm —A3cos ) e™, de = (sinn —A4coS 1) €,
des = (sinn —Ascos 1) €™,  des = (sin n —AscOS 7)) £,
Similarly, substituting eqns (31)~(33) into eqns (36) give
6
MalR = - (EIIRY) 3, covoh W
“
&
MR = (EIIR) 2| Caakn €2
6
Vs = (EIIR?) 2. Cafza(sin p +Aa €05 p) +b*As cOs p}
" |
[
Vi = (EIIRY) Zl ca{za(sin n = As cos 1) — b’A4 cOS 7} €™ (A3)
[
Ha = (EIIR®) zl ca{za(An sin p —cos p) +b?A, sin p)
[
Hya =(EIR®) 2' Cn{zn(An sin 7 +c05 ) +bA, sin 7} ™
In matrix form, eqns (A3) may be expressed as
F=El px (8)
R
where B is given by
-0iA —Dh2 —V3k3 —Vlke  —Ushs - Dehe
viAre™® DAz et piA et pidae Dhse’F Dehe ™
b3 by by b bss b
B=|ba ba ba bu bas b (A4)
bsi bs bs bss bss bse
bet be2 bas bea bes bes

by = 2i(sinp +A: cos p) +bAi cos p,
bys = 2:(sinp + A3 cos p) +b%Ascos P,
bys = zs(sin p +Ascos p) +b*Ascos p,

b32= z:sin p +A2cos p) + b A2 cos p,
bsa= 24(sin p +Aacos p) +bAscos p,
b3 = ze(sin p +Aec0S p) +bAq 08 p.

bay = {zi(sin = A, cos ) —bA) cos n} €***,ba = {z:(sin 1 ~A2c0s n) —bA; cos 9} ¢,
bas = {z3(sin 7 = A3c0s 1) —bA; cos n) € by = {24(sin n - A4 cos ) -b*Ascos 4} e,
bas = {25(sin 1 = As cos ) —b>As cos n} €* bas = {2¢(sin n — As cos 1) — bAc cos n} ¢**,

bsi1 = 2i(Ay sin p —cos p) +b?A, sin p,
bsy = z5(A3 sin p ~cos p) +bA;ssinp,
bss = 2s(As sin p —cos p) +b’Assin p,
ber = {z:(A1 sin 7 +cos ) +b%A, sin ) e

Ao

bsz = zxA2 sin p —cos p) +b A2 8in p,
bss= 24(Assinp - cos p) + b2A4sin p,
bse = z6(As $in p —cos p) + b A¢sin p.
L bea = {22(A1 sin  +cos n) +b2A; sin n} e,

bes = {23(A3 8in 5 +cos n) +b?A3 sin 7} €**, bes = {z4(A4 sin  +cos n) +b’A4sin n} e,
bes = {2s(As 8in 1 +cos n) +b?Assinn} €**, bes = {2e(Ae sin 7 +cos n) +b*Acsin g} e,



